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Abstract. A very general local realistic theory of single B0
d mesons and of correlated B0

dB0
d pairs is formu-

lated. If these pairs are produced in Υ (4S) decay, the local realistic asymmetry for observing pairs with
like and unlike flavour at different proper times remarkably differs from the quantum mechanical predic-
tion. Asymmetric B factories provide a powerful tool for the study of the EPR problem since the relative
detection experiments can be shown to be capable of a time-dependent measurement precise enough to
discriminate between local realism and quantum theory.

1 Introduction

1.1 Historical view

The strange nature of quantum correlation between sepa-
rated systems, pointed out for the first time by Einstein,
Podolsky and Rosen (EPR) [1], has stimulated a lively
debate. The incompatibility between quantum mechanics
(QM) and local realism (LR) at the empirical level be-
came evident with the 1965 work of Bell [2], showing that
a wide class of local hidden variable models satisfies an in-
equality which is violated by QM. In 1969 Clauser, Holt,
Shimony and Horne (CHSH) stressed that Bell’s inequal-
ity could be experimentally checked with atomic cascade
photon pairs emitted by single atoms [3]. Written in terms
of detection probabilities, Bell’s inequality becomes a dou-
ble limitation on

Γ ≡ ω(a, b) − ω(a, b′) + ω(a′, b) + ω(a′, b′), (1)

and reads

−1 + ω1(a′) + ω2(b) ≤ Γ ≤ ω1(a′) + ω2(b), (2)

where ω(x, y) is the joint probability that both photons are
detected by two photomultipliers placed on their paths af-
ter crossing polarisers with axes x and y (x = a, a′ refers to
the first photon, y = b, b′ refers to the second one); ω1(a′)
[ω2(b)] is the probability that the first [second] photon is
transmitted by the polariser with axes a′ [b] and detected.
Inequalities (2) were not violated by the quantum mechan-
ical predictions for experiments on atomic cascade photon
pairs, but CHSH pointed out that meaningful experiments
were possible, even with the available low efficiency pho-
ton counters, if the following additional assumption was
made:

AA. Given that a pair of photons emerges from two re-
gions of space where two polarisers can be located, the
probability of their joint detection by two photomultipli-
ers is independent of the presence and orientation of the
polarisers. This assumption allowed CHSH to deduce a
different inequality:

−1 + ω(a′,∞) + ω(∞, b) ≤ Γ ≤ ω(a′,∞) + ω(∞, b), (3)

where ω(a′,∞) [ω(∞, b)] is the joint probability that both
photons are detected when the polariser is not present on
the trajectory of the second [first] one, and Γ is again given
by (1). The shift from (2) to (3) was crucial in producing
a disagreement with QM. In an experiment in 1972 by
Freedman and Clauser [4] the inequality (3) was violated,
(2) was not (actually they experimentally studied a partic-
ular form of (3) – which is known as Freedman’s inequality
– to which of course our slightly more general argument
applies fully). In 1974 Clauser and Horne [5] proposed
a different additional assumption and built an explicit
model of LR which reproduced within errors the results of
the FC experiment. They could write: “We thereby prove
that the Freedman–Clauser results constitute a refutation
of only those OLT which satisfy our (or some similar) sup-
plementary assumption”, where OLT stands for “objective
local theories”, a notion equivalent to that of LR. In the
1981 Orsay experiments [6] the inequalities (2) and (3)
respectively become

−0.845 ≤ Γ ≤ 0.155 (4)

and

0.000 ≤ Γ ≤ 0.015, (5)

when the lower and upper limits of (2) and (3) are calcu-
lated numerically for the actual experiment. The measured
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value of Γ was found to agree with the prediction of QM
and was slightly above 0.015, but well below 0.155. There-
fore, inequality (4) was not violated, only (5) was. The
meaning of the Orsay experiment is therefore totally de-
pendent on the meaning of the inequality (3). As Clauser
and Shimony noted [7], it is noteworthy that there exists
an important hidden variable theory – the semiclassical
radiation theory – which correctly predicts a large body
of atomic physics data, but which violates the CHSH as-
sumption AA. Moreover we stress that such an assump-
tion is contrary to the fundamentals of the local realistic
theories: emergence from two polarisers would in all cases
imply a selection of the two-photon hidden variables, but
these variables could well be those that determine the pho-
tomultiplier discharge! In 1983 Marshall et al. [8] showed
that a consistently local and realistic picture of atomic
cascades could fit the Orsay data as closely as the quan-
tum mechanical model and identified in the low efficiency
of photodetectors the reason for the compatibility between
QM and LR in the case of all performed EPR experiments.
During the eighties several papers [9] continued to stress
the inequivalence of the inequalities (2) and (3), until in
1990 Lepore and Selleri [10] gave a general derivation of
the two types of Bell’s inequalities, those deduced from
LR alone and those obtained with the essential help of
an additional assumption (like AA above). These authors
proposed to call the two types of inequalities “weak” and
“strong” respectively. Thus (2) and (4) are weak, while
(3) and (5) are strong: clearly (5) gives much stronger re-
strictions on Γ than (4). A recent general review of the
strong and weak inequalities has been given in [11]. In
spite of these unequivocal developments there still are pa-
pers which conclude that LR is experimentally violated
without examining carefully the underlying assumptions.
An example of how the experimental comparison between
the existing quantum theory and LR should not be done
is offered by a paper of the Rochester group [12] entitled
Experimental demonstration of the violation of local real-
ism without Bell inequalities. The physicists of this group
compared their data with some consequences of LR ob-
tained for ideal experiments [13]. In the abstract of the
paper it is stated: “We report on a two-photon coinci-
dence experiment that demonstrates the violation of local
realism, as defined by Einstein, Podolsky and Rosen, by
about 45 standard deviations [. . .]”. If such a statement
were correct the long debate on LR and the EPR paradox
would finally have come to an end. However the analysis
of the Rochester group appears immediately in a differ-
ent light if one pays attention to an assumption made in
the introduction of the paper [12]: “As the photodetectors
used in the experiment are not 100% efficient [. . .] it is nec-
essary to assume that photon absorptions are completely
random. With that (fair sampling) assumption [. . .] we
show that local realism is violated in two-photon coinci-
dence experiments”. Actually the fair sampling assump-
tion (just like AA above) gives rise to a very important
mutilation of LR; this is known at least since 1983 when
that assumption was proposed in Aspect’s thesis [14]. A
first answer to the Rochester group was given by Garuc-

cio [15] who could show that a crucial parameter η0 (ratio
of sums of quantum mechanical probabilities) must have
a value not less than 0.82 in order to make a meaning-
ful comparison between QM and LR. The actual value for
the Rochester experiment was 0.10 and Garuccio rightly
concluded [15]: “[. . .] this proves that the experiment is
not able to distinguish quantum mechanics and Einstein
locality without supplementary assumptions”. Here “Ein-
stein locality” is practically synonymous to LR. Because
of the low detection efficiency the same considerations ap-
ply to the recent experiment by Zeilinger [16]. A second
answer was given by Cabello and Santos [17] who built
a local hidden variable model whose predictions were in
numerical agreement with the photon coincidence num-
bers observed in the Rochester experiment and collected
in Table 1 of [12]. According to the Rochester group those
numbers implied a violation of LR, but Cabello and Santos
wrote: “We maintain that the experiment refutes only a
restricted family of local hidden variable theories contain-
ing additional assumptions”. The comparison between LR
and QM at the beginning of the year 2000 is as open as it
always was. Hopes of a final resolution of the EPR paradox
lie in the study of K0–K0 pairs produced at φ factories
and of B0–B0 pairs produced at B factories, because par-
ticle physics detectors are much more efficient than those
for optical photons and the distinction between “strong”
and “weak” formulations of LR becomes much less imp-
ortant, both conceptually and numerically.

1.2 EPR tests in particle physics

The behaviour of a pair of neutral pseudo-scalar mesons
(e.g. K0K0 or B0B0), anti-correlated in flavour if pro-
duced by the decay of a JPC = 1−− state (e.g. the Φ
or the Υ (4S) resonances) seems even more puzzling than
the behaviour of spin correlated pairs of stable particles
(photons or electrons). A critical discussion of the EPR
paradox for K0K0 pairs and of the earlier attempts to
check Bell’s inequality in kaon Φ decays was made by
Ghirardi, Grassi and Weber [18]. The main argument was
that Bell’s inequality, written in terms of four different
times of flight of the kaons, is not violated by the quan-
tum mechanical two-time joint probability for correlated
strangeness, due to the specific values of kaon masses and
decay widths. It could easily be shown in the same way
that an analogous argument holds for Bd mesons. Re-
cently further Bell-type tests involving new Bell-like in-
equalities for correlated neutral meson–anti-meson pairs
have been proposed and discussed [19]. However, some of
them would probe only a restricted class of local realistic
theories whereas others avoid this difficulty but require
experimental set-ups not available in the near future [11].
But Bell’s inequality is only one of the many consequences
of LR: EPR correlations can provide tests sensitive to pos-
sible deviations from QM. Meaningful tests of LR, not of
the Bell-type, have been proposed for the K0–K0 system
[20] [21]. In the present paper, after developing a very gen-
eral local realistic theory for the B0

d–B
0
d system (following
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the ideas in [20] and [21]), a test to discriminate between
QM and LR is proposed and its feasibility with an asym-
metric B factory is discussed. Only a few works on EPR
tests refer to the B0

d–B
0
d system [22] and use a decoher-

ence parameter ζ (such that the QM interference term is
multiplied by a factor (1− ζ)) to measure deviations from
QM. Combining already published data (from CLEO and
Argus and from LEP experiments) they deduce a clear
indication in favour of QM. However, this is an expected
conclusion taking into account that falsification of ζ = 1
means simply a falsification of the spontaneous factoriza-
tion hypothesis (SFH). Indeed SFH was already falsified
with gamma ray pairs from e−–e+ annihilations [23], with
atomic photon pairs [24] and recently with kaons pairs
produced in p–p annihilations [25]. On the other hand,
it is possible to reproduce within the local realistic ap-
proach all non-paradoxical predictions of QM, including
anti-correlations in strangeness and CP (or beauty and
mass), which are absent in SFH; thus SFH violation is
also predicted by any reasonable approach based on LR.
In the present paper we will deduce from LR physical con-
sequences in a completely general way – so general that
if they are found incorrect in a high efficiency experiment
on correlated neutral Bd meson pairs, this will imply the
death of LR. Such an event would be entirely new. This
work is organized as follows. In the Sect. 2 the Bd meson
pair correlation and the quantum mechanical formalism
are reviewed. In the Sect. 3 a local realistic theory for the
B0

d–B
0
d system is accurately developed and its predictions,

different from those of QM, are discussed. In Sect. 4 we
stress that the asymmetric collider allows one to perform
time-dependent measurements and then discuss how our
EPR test can be performed using techniques and methods
peculiar to lifetime and mixing measurement.

2 B meson pair correlation

Let us briefly review the quantum mechanical basic for-
malism for the EPR correlatedB0B0 pairs that can be cre-
ated as decay products of the Υ (4S) resonance. More pre-
cisely B0

dB
0
d pairs are produced since Υ (4S) is not heavy

enough to decay into B0
sB

0
s pairs. From now on the index

d will be dropped to simplify notation: with B0 a B0
d will

be intended. In the quark model the resonance Υ (4S) is a
bb state with quantum numbers JPC = 1−−. In the strong
decay Υ (4S) → B0B0 the created pair inherits the Υ (4S)
quantum numbers. Since B mesons are spinless, JP = 1−

implies that the B0B0 pair is in a p-wave total angular
momentum state. C = −1 implies that the flavour part of
the pair wave function is anti-symmetric. Therefore imme-
diately after the decay (namely at t = 0) the B0B0 state
vector is given, in the Υ (4S) frame, by

|ψ(0, 0)〉 = 1√
2
{|B0(�p)〉|B0(−�p)〉

− |B0(�p)〉|B0(−�p)〉}
≡ 1√

2
{|B0〉l|B0〉r − |B0〉l|B0〉r}, (6)

where l (r) denote the B meson motion directions “left”
(“right”) and |B0〉, |B0〉 are beauty eigenstates (B0 = bd,
B0 = bd). Possible tiny CP violation will be neglected
throughout this paper since it could not appreciably mod-
ify the large difference between LR and QM predictions
that will be found. Thus the mass eigenstates |B0

H〉, |B0
L〉

(H for “heavy” and L for “light” such that ∆m = mH −
mL > 0) can be identified with CP eigenstates:

|B0
H〉 = 1√

2
{|B0〉 + |B0〉}, |B0

L〉 = 1√
2
{|B0〉 − |B0〉},

(7)
and the state vector (6) can also be expressed as

|ψ(0, 0)〉 = 1√
2
{|B0

H〉l|B0
L〉r − |B0

L〉l|B0
H〉r}. (8)

The time evolution of the complex mass eigenstates is
given by

|B0
H(t)〉 = |B0

H〉e−αHt, |B0
L(t)〉 = |B0

L〉e−αLt, (9)

where t is the particle proper time and (with h̄ = c = 1)

αH =
1
2
Γ + imH, αL =

1
2
Γ + imL (10)

(the two neutral B mesons are expected to have a negligi-
ble difference in lifetime). The time evolution operator for
state (6) is the product of the time evolution operators for
single B mesons states, so that, at proper times tl and tr,
the time evolved state for the B0B0 pair can be written
as

|ψ(tl, tr)〉 = 1√
2
{|B0

H〉l|B0
L〉re−αHtl−αLtr

− |B0
L〉l|B0

H〉re−αLtl−αHtr}. (11)

The different exponentials in (11) generate B0B0 and
B0B0 components. Indeed the time evolution of B0, B0

is governed by a weak interaction that does not conserve
flavour and thus allows B0–B0 oscillations to take place
between the flavour eigenstates (B0–B0 mixing). The prob-
abilities of B0B0, B0B0 and B0B0 observations are given
(using 11) and (7)) by

PQM [B0(tl);B0(tr)]

=
1
4
E(tr + tl)[1 + cos(∆m(tr − tl))]

= PQM [B0(tl);B0(tr)], (12)

PQM [B0(tl);B0(tr)]

=
1
4
E(tr + tl)[1 − cos(∆m(tr − tl))]

= PQM [B0(tl);B0(tr)], (13)

where E(t) ≡ e−Γt. For tl = tr (13) vanishes and the
probability of having like flavours is zero. This flavour anti-
correlation means that the two neutral B mesons evolve
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in phase so that at equal proper times, until one of them
decays, there are always a B0 and a B0 present. Let us
consider the following flavour asymmetry

A(tl, tr) =
P [B0(tl);B0(tr)] − P [B0(tl);B0(tr)]
P [B0(tl);B0(tr)] + P [B0(tl);B0(tr)]

, (14)

that will be our fundamental parameter for the compari-
son between quantum theory and the local realistic predic-
tions. From the experimental point of view the advantage
of considering ratios of probabilities or numbers of events
is that systematic errors tend to cancel. In QM the asym-
metry (14) is predicted to be a very simple function of
tr − tl only (by (12) and (13)):

AQM(tl, tr) = cos(∆m(tr − tl)) = cos
(
x

(
tr − tl

τ

))
,

(15)
where [26]

x =
∆m

Γ
= 0.723 ± 0.032. (16)

We will show that the asymmetry predicted by LR is nec-
essarily quite different from (15).

3 B meson pair correlations within LR

3.1 Two-time probabilities

The EPR paradox arises from the incompatibility at the
empirical level between the predictions of quantum the-
ory and local realism. The latter can be expressed by the
following three assumptions:

(I) If, without in any way disturbing a system, we can
predict with certainty the value of a physical quan-
tity, then there exists an element of physical reality
corresponding to this physical quantity (EPR reality
criterion).

(II) If two physical systems (e.g. our two neutral B
mesons) are separated by a large distance, an el-
ement of reality belonging to one of them cannot
have been created by a measurement performed on
the other one (separability).

(III) If at a given time t a physical system has an element
of reality, the latter cannot be created by measure-
ments performed on the same system at time t′ > t
(no retroactive causality).

Local realism can be applied to the B0 meson pairs de-
scribed quantum mechanically by the state vector (11),
by considering only those predictions of (11) to which the
EPR reality criterion can be applied. These are flavour
and mass anti-correlations. Obviously, if such anti-
correlations were not found to exist experimentally, our
conclusions could not be correct. If they are assumed to
exist, one can say the following [20]:

(a) each B meson of every pair has an associated element
of reality λ1 which determines a well defined value of
mass (λ1 = +1,−1 corresponds to mH,mL, respec-
tively);

(b) each B meson of every pair has an associated element
of reality λ2 which determines a well defined value of
flavour (λ2 = +1,−1 corresponds to b = +1,−1, re-
spectively).

Furthermore b is not a stable property: it has sudden
jumps, from +1 to −1 and vice versa, that are simultane-
ous for the two mesons of every pair but happen at random
times in a statistical ensemble of many pairs. Notice that
the application of local realism to the physical situation
described by (11) has brought us, at least formally, out-
side quantum theory: no quantum mechanical state vector
exists, in fact, which can describe a B meson as having si-
multaneously well-defined mass and flavour values. This
is of course the standard approach of all realistic interpre-
tations of quantum phenomena. Following the treatment
in [20] and [21] relative to K mesons and taking into ac-
count the analogy (strangeness, CP) ↔ (beauty, mass),
four B meson basic states, characterised by beauty and
mass both definite, can be introduced:

B1 = BH : state with b = +1 and m = mH,

B2 = BH : state with b = −1 and m = mH,

B3 = BL : state with b = +1 and m = mL,

B4 = BL : state with b = −1 and m = mL.

(17)

The probabilities of observing the ith state at proper time
t conditional on an initial jth state at proper time zero are
pij(t|0) = probability of Bi at time t given Bj at time 0
(i, j = 1, 2, 3, 4) for the left going (l) meson, and qij(t|0) =
probability of Bi at time t given Bj at time 0 (i, j =
1, 2, 3, 4) for the right going (r) meson. The symbols p and
q will be used for all the probabilities of the left and right
going meson, respectively. It can be shown that all the
physical conditions imposed by QM to single B mesons are
satisfied by the probabilities of LR which can be collected
in a “probability matrix”

M = (18)


E(t)Q+(t) E(t)Q−(t) 0 0
E(t)Q−(t) E(t)Q+(t) 0 0

0 0 E(t)Q+(t) E(t)Q−(t)
0 0 E(t)Q−(t) E(t)Q+(t)


 ,

where p11(t|0) = q11(t|0) = E(t)Q+(t), p12(t|0) = q12(t|0)
= E(t)Q−(t), etc., and

Q±(t) ≡ 1
2
[1 ± cos(∆mt)], (19)

so that Q+(t) + Q−(t) = 1. The proof of (18) is strictly
analogous to that for neutral kaons published in [20]. It
has been shown that this set of probabilities is unique
within the local realistic approach [11].

3.2 Three time probabilities

The physical situation described in QM by the wave func-
tion (6) corresponds to the initial LR probabilities

q1(0) = q2(0) = q3(0) = q4(0) =
1
4
, (20)
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where qi is the probability of the state Bi (i = 1, 2, 3, 4).
Our present task is to find the maximum and minimum
values allowed by LR for the asymmetry parameter A, for
tr > tl. Two time probabilities can be written by means
of probabilities with three indices by using Bayes’ formula
[27]:

q11(tr, tl) = q111(tr, tl|0)q1(0) + q112(tr, tl|0)q2(0),
q21(tr, tl) = q211(tr, tl|0)q1(0) + q212(tr, tl|0)q2(0),

(21)

where qijk(tr, tl|0) is the probability of having Bi at time tr
and Bj at time tl given a Bk at time 0 (i, j, k = 1, 2, 3, 4).
To simplify the notation, let us set El ≡ E(tl), Ql

± ≡
Q±(tl) and Er ≡ E(tr), Qr

± ≡ Q±(tr). One must have

q111(tr, tl|0) + q121(tr, tl|0) = ErQ
r
+, (22)

q211(tr, tl|0) + q221(tr, tl|0) = ErQ
r
−, (23)

because the left hand sides are the probabilities of Bi at
time tr (i = 1, 2) summed over all possible states at time
tl, given a B1 at time 0. Therefore the left hand sides of
(22) and (23) must equal q11(tr|0) and q21(tr|0), which are
given by (18). To (22) and (23) we can add

q111(tr, tl|0) + q211(tr, tl|0) = Er−lq11(tl|0), (24)

q121(tr, tl|0) + q221(tr, tl|0) = Er−lq21(tl|0), (25)

where Er−l ≡ E(tr − tl). The left hand side of (24) is the
probability that the meson is either B1(tr) or B2(tr) (then
that is undecayed at tr) or that it is B1(tl), given that it
was B1(0). The meaning of (25) is similar. The probabil-
ities on the right hand sides of (24) and (25) are again
given by (18). Therefore, (24) and (25) can be written as

q111(tr, tl|0) + q211(tr, tl|0) = ErQ
l
+, (26)

q121(tr, tl|0) + q221(tr, tl|0) = ErQ
l
−, (27)

because of Er = Er−lEl. Four unknown probabilities ap-
pear in (22), (23) and (26), (27). These equations are
however not independent because the sum of (22) and
(23) equals the sum of (26) and (27) (remember that
Q+ +Q− = 1). One can write three probabilities in terms
of q111: 


q121 = ErQ

r
+ − q111,

q211 = ErQ
l
+ − q111,

q221 = Er(Ql
− − Qr

+) + q111,

(28)

where the arguments (tr, tl|0) of the three time probabili-
ties have been omitted; this will be done systematically in
the following. Obvious upper and lower limits for q111 are

0 ≤ q111 ≤ ErQ
r
+, ErQ

l
+, (29)

as follows from (22) and (26). Analogous limits can be ob-
tained for the other three probabilities which, using (28),
can be translated into further limitations for q111. The
overall result is

p ≤ q111 ≤ P, (30)

where

p = ErMax{0; (Qr
+ − Ql

−)},
P = ErMin{Ql

+;Q
r
+}. (31)

When different limitations are given it is useful to adopt
the most stringent ones. For this reason in (31) the max-
imum of the minima and the minimum of the maxima
are considered. Which one of the two terms within curly
brackets has to be chosen depends on tl and tr; for in-
stance Qr

+ −Ql
− can be positive or negative depending on

the considered times. Equations similar to (22), (23) and
(26), (27) can be written for an initial B2. They are

q222 + q212 = ErQ
r
+, (32)

q122 + q112 = ErQ
r
− (33)

and
q222 + q122 = ErQ

l
+, (34)

q212 + q112 = ErQ
l
−. (35)

Notice that if the indices 1 and 2 are systematically inter-
changed, (22), (23) and (26), (27) become (32), (33) and
(34), (35) respectively. Conclusions similar to (28)–(30)
must then hold for these new probabilities, by applying
the same interchange. One has


q212 = ErQ

r
+ − q222,

q122 = ErQ
l
+ − q222,

q112 = Er(Ql
− − Qr

+) + q222

(36)

and
p ≤ q222 ≤ P, (37)

with p and P again given by (31). Remembering (21) and
(20), and using (28) and (36), one gets

q11(tr, tl) =
1
4
(q111 + q112)

=
1
4
[Er(Ql

− − Qr
+) + q111 + q222], (38)

q21(tr, tl) =
1
4
(q211 + q212)

=
1
4
[Er(Ql

+ +Qr
+) − q111 − q222]. (39)

Similar reasonings can be made for B3(0) and B4(0). The
results are very similar to the previous case and one ob-
tains

q33(tr, tl) =
1
4
(q333 + q334)

=
1
4
[Er(Ql

− − Qr
+) + q333 + q444], (40)

q43(tr, tl) =
1
4
(q433 + q434)

=
1
4
[Er(Ql

+ +Qr
+) − q333 − q444], (41)

with the limitations

p ≤ q333 ≤ P, p ≤ q444 ≤ P, (42)

with p and P again given by (31).
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Fig. 1. Flavour asymmetry predicted by QM (left) and LR (right; maximum values)

3.3 B meson pair probabilities

Next we calculate the local realistic probability of having
two B0 mesons with b = −1 at proper times tl and tr > tl.
We must then consider the situations in which there is
either B2 or B4 on the left at time tl and on the right at
time tr. This probability is

PLR[B0(tl);B0(tr)] = Elq21(tr, tl) + Elq43(tr, tl). (43)

The first term in (43) is the probability that the first B0

is undecayed at time tl times the probability that the sec-
ond B0 is B2(tr) and B1(tl): the latter factor, due to anti-
correlation, coincides with the probability that the second
B0 is B2(tr) and the first one B4(tl). Similar is the mean-
ing of the second term in (43). We must also calculate the
probability of having a B0 with b = +1 at proper time
tl and a B0 with b = −1 at proper time tr > tl. This is
clearly given by

PLR[B0(tl);B0(tr)] = Elq33(tr, tl) + Elq11(tr, tl). (44)

From (43) and (44) it follows that

PLR[B0(tl);B0(tr)] + PLR[B0(tl);B0(tr)]
= El[q21 + q11 + q43 + q33]. (45)

From (38)–(41) one also has

PLR[B0(tl);B0(tr)] + PLR[B0(tl);B0(tr)] =
1
2
Er+l. (46)

Furthermore

PLR[B0(tl);B0(tr)] − PLR[B0(tl);B0(tr)]
= El[q33 − q43] + El[q11 − q21]. (47)

Using (38)–(41) and the limits (30), (37) and (42) it fol-
lows that

{PLR[B0(tl);B0(tr)] − PLR[B0(tl);B0(tr)]}max

=
1
2
Er+l(1 − 2 | Ql

+ − Qr
+ |), (48)

and

{PLR[B0(tl);B0(tr)] − PLR[B0(tl);B0(tr)]}max

=
1
2
Er+l{1 − 2Min[(Ql

+ +Qr
+); (Q

l
− − Qr

−)]}. (49)

Thus, for LR, the asymmetry parameter (14) turns out to
have maximum and minimum values given by{

ALR
max(tl; tr) = 1 − 2 | Ql

+ − Qr
+ |,

ALR
min(tl; tr) = 1 − 2Min[(Ql

+ +Qr
+); (Q

l
− +Qr

−)],
(50)

It is useful to write (50) again with the explicit dependence
on (tr − tl)/τ ≡ η (with η > 0):


ALR

max(tl; tr) = 1− | (1 − cos(xη)) cos(xtl)
+ sin(xη) sin(xtl) |,

ALR
min(tl; tr) = 1

− Min[2 + Ψ ; 2 − Ψ ],

(51)

where

Ψ = (1 + cos(xη)) cos(xtl) − sin(xη) sin(xtl). (52)

The behaviour of (15) and (50) is shown in Fig. 1. It can
be noticed that AQM depends only on the difference of
the two proper times and remains unchanged under the
tl ↔ tr exchange (thus showing a symmetric behaviour
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Fig. 2. Flavour asymmetry predicted by QM and LR (maxi-
mum values) for some fixed tl/τ values

with respect to (tr − tl)/τ). Therefore, with tl > tr, the
study of AQM is reduced to the case tr > tl. On the other
hand ALR depends not only on this difference but also on
one given absolute proper time, t∗. However, under the
tl ↔ tr exchange ALR is symmetric as can easily be shown
and as should be expected from the conventionality of the
l and r tags. Thus the study of ALR can be limited to the
case tr ≥ tl establishing, conventionally, the dependence
of ALR on the shorter absolute time. To appreciate the dif-
ference between the prediction of QM and the maximum
prediction of LR it is useful to represent the asymmetry
parameter as a function of (tr − tl)/τ for some given val-
ues of tl as in Fig. 2. The comparison of the whole LR
prediction with the MQ one, for two representative val-
ues of tl, is given in Fig. 3. It is interesting to notice that
the difference between the predictions of QM and LR is
higher in the B0–B0 system than in the K0–K0 system,
after comparison with the results of [21]. However, from an
experimental point of view, B mesons require measuring
smaller decay times that is more difficult.

4 Experimental feasibility of the EPR test

The construction of the asymmetric B factories (high lu-
minosity asymmetric e+e− colliders operating at the Υ (4S)
resonance), i.e. the PEP-II storage ring instrumented with
the BaBar detector at SLAC [28], and the KEK-B stor-
age ring with the Belle detector at KEK [29], will provide
a powerful tool to perform the EPR test just proposed.
Indeed, as we are going to argue, this test can be per-
formed with the experimental setups and software tools
already being developed for CP violation, lifetime and

mixing measurements, and the precision required for these
measurements is adequate.

Firstly we review some characteristics and experimen-
tal parameters concerning asymmetric B factories, then
we suggest two methods to perform the EPR test and
finally we provide a quantitative evaluation for the test
feasibility.

4.1 Methods and performances
at the asymmetric B factories

The asymmetry (14), as predicted by QM, depends on the
difference of the two B meson proper decay times ∆t. The
asymmetric collider configuration and an accurate vertex
determination make the determination of ∆t possible. In-
deed, the fundamental reason for developing asymmetric
B factories is the need to measure small proper time inter-
vals, whereas a precise vertex detector is necessary to mea-
sure a space dependence from which the time dependence
can be deduced. Time measurements would not be feasi-
ble if the Υ (4S), having an energy just over the Bd me-
son pair production threshold, were produced at rest: the
B mesons have very low momentum (340MeV/c) in the
center-of-mass frame and the paths between production
and decays are too small (30µm on average) to be mea-
sured even by silicon vertex detectors. Therefore, proper
decay time measurements require the asymmetric beam
configuration that produces the Υ (4S) resonance in mo-
tion in the laboratory frame, thus allowing the expansion
between the two decay positions. Neglecting B mesons
motion in the Υ (4S) frame, the proper time difference is
to a good approximation given by ∆t � ∆z/cη where ∆z
is the distance between the two B decay vertices measured
in the laboratory, along the beams direction, and η = βγ
is the Lorentz boost factor due to the asymmetric beam
energies. Its value is chosen as a good compromise between
the ∆z expansion and the necessity that the boosted de-
cay products are not lost in the dead cone ahead avoid-
ing efficiencies decrease: η = 0.56 at BaBar-PEP II [28],
η = 0.42 at Belle-KEKB [29]. The applied boost expands
the average separation of the two B vertices ∆z to about
250µm. In this case a silicon vertex detector allows one
to determine the separation of the two B decay vertices
∆z. Both BaBar [28] and Belle [29] can provide a σ∆z of
the order of 100µm and in some cases better, depending
on the detected decay channels. Among others three B
physics measurements can be performed at asymmetric B
factories: CP asymmetries, Bd mixing and the Bd lifetime.
Both physical time-dependent asymmetries, that need to
be measured by BaBar and Belle in order to establish CP
violation and determine the mixing parameter ∆mB , de-
pend on the difference∆t between the twoB meson proper
decay times. To measure CP asymmetries one looks for
events where one neutral B meson decays into an hadronic
CP eigenstate at the time tCP while the other decays, at
ttag, to a semi-leptonic or hadronic tagging mode that acts
as a b flavour identifier: ∆t = tCP − ttag. On the other
hand the mixing measurement can be based on double
tagged dileptonic events. It must be pointed out that the
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Fig. 3. Flavour asymmetry predicted by QM and LR for tl/τ = 0.5 (left) and 1.0 (right)

dilepton approach with a time-dependent asymmetry is
different from the usual time-integrated dilepton methods
developed at a symmetric e+e− collider at Υ (4S) (by the
CLEO experiment) which allows only the measurement of
χd = x2

d/2(1 + x2
d). Most lifetime measurement methods

rely on the determination of both the secondary vertices
and of the primary one, the Υ (4S) decay point; an ex-
clusive reconstruction for at least one B meson is needed,
while the other B can be partially reconstructed or only
vertexed.

In general the resolution achievable in individual track
reconstruction is limited by multiple scattering introduced
primarily by the beam pipe. The resolution σ∆z (for ex-
ample σ∆z = (σ2

zCP
+ σ2

ztag
)1/2) is primarily determined

by the error in the tagged vertex position σztag [28] [29].
Typical values are σz � 50µm for a fully reconstructed
B meson and σz � 100µm for a partially reconstructed
one. In clean hadronic channels and in lepton tagging a
better resolution can be achieved in principle, thus to-
gether providing σ∆z better than 100µm for the CP anal-
ysis and σ∆z � 110µm in the dilepton analysis. On the
other hand non-gaussian tails with σ ∼ 200 ÷ 300µm for
a significant fraction of the selected samples may par-
tially spoil these resolutions. In conclusion, we assume
that the asymmetric machine configuration and high per-
formance in B vertexing will provide time-dependent mea-
surements with σ∆z of the order of 100 ÷ 110µm so that
σ∆t = σ∆z/βγc ∼ 0.4 τ .

4.2 EPR test performed
by lifetime measurement method

The Υ (4S) decays almost exclusively to pairs of B mesons,
that are neutral with a probability of about 50%. In such
cases no ionizing particle comes out of the Υ (4S) decay
point which is thus not directly measurable. This in turn
does not permit one to record and use decay distances in
a lifetime determination. However, lifetime measurements
can be performed without knowing the B mesons produc-
tion point, using only the ∆z measurement. On the other
hand a more sophisticated method of reconstructing the
geometry and the kinematics of the events has been de-
veloped in BaBar in order to perform more direct lifetime
measurements [28]. This method can suggest how to per-
form a measurement of the asymmetry (14) by measuring
not only ∆t but also one time of flight (t∗ = tl, Sect. 3.3)
as needed by the local realistic time dependence. In this
method the decay vertices of the fully reconstructed B0,
of the other B0 and the Υ (4S) production point, consid-
ered to belong to the very flat ribbon-shaped beam spot
(σx � 140µm, σy � 6µm, σz � 1 cm), are connected as-
suming the direction of their lines of flight from the kine-
matics. Thus a gain in measurement accuracy is provided
by adding kinematical constraints to the standard geo-
metrical fit of the decay vertices. To perform the EPR
test the quantities σ∆t, σt∗ must be both small enough
in order to allow for an effective time-dependent analy-
sis. Qualitatively σ∆z and σz−zΥ

should be smaller than
half the average separation between the vertices, and the
typical value of σ∆z ∼ 100µm (σ∆t ∼ 0.4τ) could be
adequate. This requirement could be satisfied with both
the B mesons fully reconstructed and using the algorithm
mentioned above. On the other hand, as the rate of fully
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reconstructible B mesons is likely to be of the order of 1%
or less [28], the second decay should not be fully recon-
structed in order to get sufficient statistics in a relatively
short time. However, for this second decay no vertexing
technique can provide a σz−zΥ

smaller than 100µm. From
the point of view of the EPR test it is preferable to use the
t∗ = tl time only if it belongs to the fully reconstructed
B meson. This is only satisfied on average in one half of
the events and reduces the statistics by one half, but to
a level still higher than achievable considering both fully
reconstructed B mesons.

4.3 EPR test performed
by mixing measurement method

A way to experimentally obtain the asymmetry (14), in
order to test the quantum mechanical and local realis-
tic predictions, (15) and (50) respectively, can be based
on the measurement of the time-dependent mixing. Since
P [B0(tl);B0(tr)] = P [B0(tl);B0(tr)], P [B0(tl);B0(tr)] =
P [B0(tl);B0(tr)] hold both in QM and in LR, the asym-
metry (14) can be written as

A(tl, tr) = {P [B0(tl);B0(tr)]

+P [B0(tl);B0(tr)] − P [B0(tl);B0(tr)]
−P [B0(tl);B0(tr)]}
/{P [B0(tl);B0(tr)] + P [B0(tl);B0(tr)]

+P [B0(tl);B0(tr)] + P [B0(tl);B0(tr)]}, (53)

and also as

A(tl, tr) = {N(B0, B0)(tl, tr) − N(B0, B0)(tl, tr)
− N(B0, B0)(tl, tr)}
/ {N(B0, B0)(tl, tr) +N(B0, B0)(tl, tr)
+ N(B0, B0)(tl, tr)}, (54)

where N(B0, B0) represents the number of unlike-flavour
events. In LR the asymmetry depends not only on ∆t, as
in QM, but also on t∗. However, the local realistic time
dependence on ∆t could be directly compared to that of
QM, for instance by performing a partial time integration,
namely an integration on tl/τ for tl/τ < 2 with the con-
straint ∆t/τ ≤ 2. Moreover, considering that a very large
fraction of the events (double B decays) is included in the
double requirement (tl/τ < 3 and tr/τ < 3), for a given
tl/τ < 3 these events are characterized by values of ∆t
belonging to the time interval [0, 3− (tl/τ)], for which the
local realistic prediction is always below the quantum me-
chanical one. Thus a total integration over tl/τ is clearly
allowed. This permits one to consider the following quan-
tity with simplified time dependence:

A(∆t)

=
N(B0, B0)(∆t) − N(B0, B0)(∆t) − N(B0, B0)(∆t)
N(B0, B0)(∆t) +N(B0, B0)(∆t) +N(B0, B0)(∆t)

.

(55)

Therefore, considering a dilepton tagging approach to ob-
tain experimentally the asymmetry (55), one can measure
the asymmetry

A(| ∆t |) = N(l+l−) − N(l+l+) − N(l−l−)
N(l+l−) +N(l+l+) +N(l−l−)

, (56)

by counting the number of like-sign and unlike-sign events,
N(l±l±) and N(l+l−), as a function of | ∆t |. As the ∆z
resolution for the cascade leptons is too large, in the mix-
ing study the B meson flavour is correlated only with the
sign of the direct leptons (distinguished by their harder
momentum spectrum), and the cascade ones act as a source
of mistagging [28]. To obtain the yield of dilepton events
from semi-leptonic decays of B0B0 pairs, several other
backgrounds must be subtracted, such as dileptons from
the non-resonant process at Υ (4S) (continuum) and had-
rons misidentified as leptons (fake leptons).

4.4 Quantitative evaluation for test feasibility

Two methods, based on lifetime and mixing measurements,
have been proposed to perform the EPR test. The former,
needing a time-dependent measurement not only for ∆t
but also for t∗, requires an exclusive channel approach.
Its need of larger statistics suggests the choice of the lat-
ter method to experimentally obtain the asymmetry (14)
for an initial study. The BaBar relative accuracy of about
1% in ∆mB [28] with only one year data taking at nom-
inal luminosity (30 fb−1) suggests that at the same time
an accuracy on the asymmetry (14) largely sufficient to
discriminate between QM and LR predictions should be
obtained. The number of events required to obtain a given
level of separation between the two theoretical predictions
provides a quantitative evaluation of the power of the pro-
posed test. The number of B0B0 events to be produced, in
order to measure an asymmetry A with a statistical error
δA, is approximately given by

Nprod ≈ 1
(δA)2

· 1
D2εBr

, (57)

where D represents the product of all dilution factors, ε
is the total detection efficiency and Br (� 0.04) is the
branching ratio into the dileptonic final state. The cor-
responding needed luminosity integrated over one typical
year is

L ≡
∫

Ldt =
Nprod

σbb

, (58)

where σbb � 1.2 nb is the cross section for bb production at
the Υ (4S). Neglecting higher order effects due to the back-
grounds, the total dilution factor D is simply given by the
tagging dilution factor dtag = (1 − 2η) where the mistag
probability η is the probability that a B0B0 pair is tagged
as a B0B0 or B0B0 pair. Typical values are η = 13% and
ε = 45% [28]. Nprod has been evaluated requiring the sep-
aration between the integrated values of AQM and ALR
to be at least 4σ over an appropriate interval of the de-
cay time distribution for B0B0 pairs. Considering that ∆t
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and t∗ both greater than 0.3τ give a large difference be-
tween the two predictions, one obtains L ≈ 1 fb−1. This is
enough to discriminate between the two theoretical pre-
dictions. The larger luminosity of 30 fb−1, integrated in
one nominal year, will allow a more detailed and stringent
test to be made.

5 Conclusions

Developing a very general local realistic theory of cor-
related B0

dB
0
d, a non-Bell-type EPR test has been pro-

posed to discriminate between quantum mechanics and
local realism. Indeed the asymmetry for observing neu-
tral Bd meson pairs with like and unlike flavour predicted
by local realism is remarkably different from the quantum
mechanical prediction. This test can be based on mixing
and lifetime measurements to be carried out by the ex-
periments at the asymmetric B factories, and therefore
is not only experimentally feasible but can be effectively
performed quite soon if the expectations on the collider
luminosity and the detector performance will be fulfilled
by the BaBar and Belle collaborations.
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